
Fresco
loading images fast

Jie Wang

Software Engineer
Sep 2016



Apps using Fresco

Facebook For Android
Messenger
Groups
Pages Manager
Moments

React Native
Twitter
Wikipedia



Fresco is an Open source library to fetch 
and show images in an efficient way 

• Fetch images from 
different sources

• Decoding
• Transcoding
• Rotate and resize
• Progressive JPEG
• Animated GIF and WebP 

support

• Caching
• Prefetching to memory and disk 

cache
• Image post processing
• Instrumentation
• Cancellation and Prioritization



Integrate Fresco using Android Studio or Gradle

*With ABI splits & ProGuard: 250 ~ 300 KB



Simple way to use it: Drawee



How to use it:



The Image Pipeline

JPG

BMP

BMP JPG

JPG

JPG

UI thread Non-UI threads



Memory is important factor

• 1/10th for each application

• Images use lots of memory
• 400x800 pixels = 1536bytes = 1.5MB



Java has the Garbage Collector

• It removes all the unused object 

• But there are drawbacks….



Java.lang.OutOfMemoryError



Possible solutions to avoid OOM

• Use smaller images

• Use lower resolution

Less than ideal!!!!



Different types of Heap

Dalvik Heap

• JDK

• Limited

• Slow

• Safe

Native Heap

• NDK

• Unlimited

• Fast

• Unsafe

Other Heaps

• System calls

• Same 
advantages of 
the Native 
Heap



Use the Native Heap



Use the Others Heap: ashmem

• Create region

• Pin region

• Unpin region

• The system frees 
the memory just if 
needed

Need 
Memory?

Free 
memory

Look for 
unpinned 
memory



How to use ashmem? Purgeable Bitmap

Draw Decode Pin
Stop 

Drawing
Unpin



Purgeable Bitmap in code

What is wrong with this?

Decoding is done on the UI Thread!!!



What’s wrong with Purgeable Bitmap

While inPurgeable can help avoid big Dalvik heap allocations (from API 
level 11 onward), it sacrifices performance predictability since any image 
that the view system tries to draw may incur a decode delay which can 
lead to dropped frames. Therefore, most apps should avoid using 
inPurgeable to allow for a fast and fluid UI. To minimize Dalvik heap 
allocations use the inBitmap flag instead.



So what’s the inBitmap flag?

• It looks perfect!! But….



In FB we cannot use inBitmap

• Introduced in API Level 11

• Prior to KitKat only JPEG and PNG were supported 
with the same size

• We need a different solution



The Facebook Solution



The Facebook Solution: Pin but not Unpin



It’s important to recycle()



Great Power means Great Responsibility

SharedReferences CloseableReference
<<interface>>

• Deterministic memory management

• Simple and clear rules



Drawee makes things simple
• MVC like framework to display images

DraweeController

Model

DraweeHierarchy

DraweeView



The future of Fresco
• Smaller libraries and less .SO

• WebP

• Animations (GIF and WebP)

• Making Image Pipeline pluggable

• Many other optimizations and extensions



(c) 2009 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0

1. http://frescolib.org
Blog
http://frescolib.org/blog/2016/09/02/fresco-101.html

2. http://fresco-cn.org
3. Facebook: https://www.facebook.com/frescolib/
4. Twitter: @frescolib


